Survival of Pseudomonas putida UWC1 containing cloned catabolic genes in a model activated-sludge unit.

نویسندگان

  • N C McClure
  • A J Weightman
  • J C Fry
چکیده

The possibility of the accidental or deliberate release of genetically engineered microorganisms into the environment has accentuated the need to study their survival in, and effect on, natural habitats. In this study, Pseudomonas putida UWC1 harboring a non-self-transmissible plasmid, pD10, encoding the breakdown of 3-chlorobenzoate was shown to survive in a fully functioning laboratory-scale activated-sludge unit (ASU) for more than 8 weeks. The ASU maintained a healthy, diverse protozoal population throughout the experiment, and the introduced strain did not adversely affect the functioning of the unit. Although plasmid pD10 was stably maintained in the host bacterium, the introduced strain did not enhance the degradation of 3-chlorobenzoate in the ASU. When reisolated from the ASU, derivatives of strain UWC1 (pD10) were identified which were able to transfer plasmid pD10 to a recipient strain, P. putida PaW340, indicating the in situ transfer of mobilizing plasmids from the indigenous population to the introduced strain. Results from plate filter matings showed that bacteria present in the activated-sludge population could act as recipients for plasmid pD10 and actively expressed genes carried on the plasmid. Some of these activated-sludge transconjugants gave higher rates of 3-chlorobenzoate breakdown than did strain UWC1(pD10) in batch culture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low-frequency horizontal transfer of an element containing the chlorocatechol degradation genes from Pseudomonas sp. strain B13 to Pseudomonas putida F1 and to indigenous bacteria in laboratory-scale activated-sludge microcosms.

The possibilities for low-frequency horizontal transfer of the self-transmissible chlorocatechol degradative genes (clc) from Pseudomonas sp. strain B13 were investigated in activated-sludge microcosms. When the clc genes were transferred into an appropriate recipient bacterium such as Pseudomonas putida F1, a new metabolic pathway for chlorobenzene degradation was formed by complementation whi...

متن کامل

Trichloroethylene degradation by Escherichia coli containing the cloned Pseudomonas putida F1 toluene dioxygenase genes.

Toluene dioxygenase from Pseudomonas putida F1 has been implicated as an enzyme capable of degrading trichloroethylene. This has now been confirmed with Escherichia coli JM109(pDTG601) that contains the structural genes (todC1C2BA) of toluene dioxygenase under the control of the tac promoter. The extent of trichloroethylene degradation by the recombinant organism depended on the cell concentrat...

متن کامل

Application of reverse transcriptase PCR for monitoring expression of the catabolic dmpN gene in a phenol-degrading sequencing batch reactor.

A modified freeze-thaw method in combination with reverse transcriptase PCR was developed for monitoring gene expression in activated sludge. The sensitivity of the methodology was determined by inoculating non-sterile activated sludge samples with 3-chlorobenzoate-degrading Pseudomonas putida PPO301(pRO103), which contains the catabolic tfdB gene. tfdB mRNA was detected in 10 mg of activated s...

متن کامل

Expression, localization, and functional analysis of polychlorinated biphenyl degradation genes cbpABCD of Pseudomonas putida.

Genes of Pseudomonas putida strains that are capable of degrading polychlorinated biphenyls were cloned in the plasmid vector pUC19. The resultant hybrid plasmid, pAW6194, contained cbpABCD genes on a 9.0-kb DNA fragment that was necessary for the catabolism of polychlorinated biphenyls. These genes were further subcloned on an 8.0-kb HindIII fragment of pAW540. Degradation of 3-chlorobiphenyl,...

متن کامل

ارزیابی باکتری های جدا شده از لجن فعال حاصل از تصفیه فاضلاب شهری منطقه ویژه عسلویه جهت زیست فزونی خاک های آلوده به کروزن

Background and Objectives: Bioaugmentation is a superior technique in bioremediation of contaminated soils with petroleum hydrocarbons. The aim of this study was to evaluate the effect of isolated bacteria from activated sludge of Asalouyeh special zone municipal wastewater treatment for bioaugmentation of kerosene-contaminated soils and to study the growth of isolated bacteria in the presence ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 55 10  شماره 

صفحات  -

تاریخ انتشار 1989